Environmental TEM at the U

 Liquid/electrochemical TEM sample holder U of U Research Instrumentation Fund proposal
Heatable gas cell TEM sample holder

Defense University Research Instrumentation Program (DURIP) proposal

Goals: E-TEM

Nanoscale imaging under realistic reaction conditions

- Effects of temperature on nanoparticle stability, shape, etc.
- Effects of adsorbates on NP structure
- Growth or dissolution of nanostructures
- NP diffusion and agglomeration
- Effects of electrochemical potentials on NP structure, stability, and activity

Approaches:

Dedicated e-TEM instrument

Cost \$nM, plus annual maintenance

Environmental sample holders – convert existing STEM

Cost ~\$200k, Protochips, Hummingbird Scientific, DENS Solutions

Complete gas-cell TEM system

Holder Tip - Assembly and Design

Pressures to 1 atm, temperature to 800 or 1000 °C, depending on vendor

CASE: Perovskite/Metal Catalysts

Solution: Atmosphere system with $95/5 N_2/H_2$ and O_2 gas supplies

Results: See the **regeneration of metal NP catalysts** directly under meaningful conditions in a single microscopy session with atomic scale resolution, including **Z-contrast.**

Calcium Titanate (CTO) Doped with Rhodium CaTi_{0.95}Rh_{0.05}O₃ 1 atm 95/5 N₂/H₂ & 550 °C

> 200 kV JEOL 2100F Images courtesy of Shuyi Zhang, X. Pan group, University of Michigan

VProtochips

ATMOSPHERE

CASE: Perovskite/Metal Catalysts

Solution: Atmosphere system with $95/5 N_2/H_2$ and O_2 gas supplies

Results: See the **regeneration of metal NP catalysts** directly under meaningful conditions in a single microscopy session with atomic scale resolution, including **Z-contrast.**

Calcium Titanate (CTO) Doped with Rhodium CaTi_{0.95}Rh_{0.05}O₃ 1 atm 95/5 N₂/H₂ & 550 °C

> 200 kV JEOL 2100F Images courtesy of Shuyi Zhang, X. Pan group, University of Michigan

VProtochips

ATMOSPHERE

EDS & EELS Compatible

FEI Titan ChemiSTEM w/ SuperX Image courtesy U Manchester

Liquid Cell

Number of Inlets	1 or 2 depending on model, single outlet
Biasing Contacts	3 or 4 depending on model
Tubing Type	Replaceable microfluidic tubing
Delivery System	Variable speed liquid delivery system
Тір Туре	Removable tip
Flow Type	Continuous flow or static liquid
EDS Compatible	Yes

Heating

In situ spectroscopy

Example CaCO₃ nucleation and growth

Concurrent formation of multiple phases. All scale bars are 500nm

M.H. Nielsen, S. Aloni, J.J. De Yoreo. "In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways," Science vol. 345 iss. 6201 (2014) pp. 1158-1162

In-Situ Liquid Nanobattery

Reference: M. Gu, L.R. Parent, B.L. Mehdi, R.R. Unocic, M.T. McDowell, R.L. Sacci, W. Xu, J.G. Connell, P. Xu, P. Abellan, X. Chen, Y. Zhang, D.E. Perea, J.E. Evans, L.J. Lauhon, J.G. Zhang, J. Liu, N.D. Browning, Y. Cui, I. Arslan, and C.M. Wang. "Demonstration of an Electrochemical Liguid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes." Nano Lett. 13:12 (2013) pp. 6106-6112.

electrodes.

a real battery.

Timing

- Will learn about the liquid cell proposal in early November
- Will learn about the heatable gas cell proposal in July